Cylindrically Symmetric Charge Densities

Consider the volume charge densities $\rho_{v}(\bar{r})$ that are functions of cylindrical coordinate ρ only, e.g.:

$$
\rho_{v}(\bar{r})=\frac{1}{\rho^{2}} \quad \text { or } \quad \rho_{v}(\bar{r})=e^{-\rho}
$$

We call these types of charge densities cylindrically symmetric, as the charge density changes as a function of the distance from the z-axis only (i.e., is independent of coordinates ϕ or z).

As a result, the charge distribution in this case looks sort of like a "fuzzy cylinder", centered around the z-axis!

Using the point form of Gauss's Law, we find the resulting static electric field must have the form:

$$
E(\bar{r})=E(\rho) \hat{a}_{\rho} \quad\left(\text { for cylindrically symmetric } \rho_{v}(\bar{r})\right)
$$

Think about what this says. It states that the resulting static electric field from a cylindrically symmetric charge density is:

* A function of cylindrical coordinate ρ only.
* Points in the direction \hat{a}_{ρ} (i.e., away from the z-axis) at every point.

As a result, we can use the integral form of Gauss's Law to determine the specific scalar function $E(\rho)$ resulting from some specific, cylindrically symmetric charge density $\rho_{v}(\bar{r})$.

Recall the integral form of Gauss's Law:

$$
\begin{aligned}
\oiint_{s} E(\bar{r}) \cdot \overline{d s} & =\frac{Q_{\text {enc }}}{\varepsilon_{0}} \\
& =\frac{1}{\varepsilon_{0}} \iiint_{V} \rho_{v}(\bar{r}) d v
\end{aligned}
$$

Say surface S is a cylinder with radius ρ, centered along the z axis. Additionally, this cylinder has a finite length h. We call this surface a Gaussian Surface for this problem.

We find that, if $\rho_{v}(\bar{r})$ is cylindrically symmetric, then:

$$
\begin{aligned}
\oiint_{S} E(\bar{r}) \cdot \overline{d s} & =\int_{-h / 2}^{h / 2} \int_{0}^{2 \pi} E(\rho) \hat{a}_{\rho} \cdot \hat{a}_{\rho} \rho d \phi d z \quad \text { ®side } \\
& +\int_{0}^{2 \pi} \int_{0}^{\rho} E\left(\rho^{\prime}\right) \hat{a}_{\rho} \cdot \hat{a}_{z} \rho^{\prime} d \rho^{\prime} \mathrm{d} \phi \quad \text { హtop } \\
& -\int_{0}^{2 \pi} \int_{0}^{\rho} E\left(\rho^{\prime}\right) \hat{a}_{\rho} \cdot \hat{a}_{z} \rho^{\prime} d \rho^{\prime} \mathrm{d} \phi \\
& \text { Obottom } \\
& =E(\rho) \rho \int_{\text {h/2 }}^{h / 2} \int_{0}^{2 \pi} d \phi d z \\
& =h 2 \pi \rho E(\rho)
\end{aligned}
$$

Therefore, from Gauss's Law, we get:

$$
h 2 \pi \rho E(\rho)=\frac{Q_{\text {enc }}}{\varepsilon_{0}}
$$

Rearranging, we find that the scalar function $E(\rho)$ is:

$$
E(\rho)=\frac{Q_{\text {enc }}}{2 \pi \varepsilon_{0} h \rho}
$$

The enclosed charge $Q_{\text {enc }}$ can be determined for a cylindrically symmetric distribution as:

$$
\begin{aligned}
Q_{e n c} & =\iiint_{V} \rho_{v}(\bar{r}) d v \\
& =\int_{-h / 2}^{h / 2} \int_{0}^{2 \pi} \int_{0}^{\infty} \rho_{v}\left(\rho^{\prime}\right) \rho^{\prime} d \rho^{\prime} d \phi d z \\
& =2 \pi h \int_{0}^{D} \rho_{v}\left(\rho^{\prime}\right) \rho^{\prime} d \rho^{\prime}
\end{aligned}
$$

Therefore, we find that the static electric field produced by a cylindrically symmetric charge density is $\mathrm{E}(\overline{\mathrm{r}})=E(\rho) \hat{a}_{\rho}$, where the scalar function $E(\rho)$ is:

$$
\begin{aligned}
E(\rho) & =\frac{Q_{e n c}}{2 \pi \varepsilon_{0} h \rho} \\
& =\frac{1}{\varepsilon_{0} \rho} \int_{0}^{\rho} \rho_{v}\left(\rho^{\prime}\right) \rho^{\prime} d \rho^{\prime}
\end{aligned}
$$

Or, more specifically, we find that the static electric field produced by some cylindrically symmetric charge density $\rho_{v}(\bar{r})$ is:

$$
\begin{aligned}
\mathrm{E}(\overline{\mathrm{r}}) & =\frac{Q_{\text {enc }}}{2 \pi \varepsilon_{0} h \rho} \hat{a}_{\rho} \\
& =\frac{\hat{a}_{\rho}}{\varepsilon_{0} \rho} \int_{0}^{\rho} \rho_{v}\left(\rho^{\prime}\right) \rho^{\prime} d \rho^{\prime}
\end{aligned}
$$

Thus, for a cylindrically symmetric charge density, we can find the resulting electric field without the difficult integration and evaluation required by Coulomb's Law!

